Ответ:
tgA= его нет
tgB=AC/AB=4/3
tgC=AB/AC=3/4
Объяснение:
tg A = a/b
Tg- это отношение противоположного катета на прилежащий катет. Тангенса 90 градусов не существует, либо равняется бесконечности.
Значения брала, считая клеточки
Полупериметр АВС
p = (16+20+24)/2 = 30 см
Площадь по формуле Герона
S² = 30*(30-16)(30-20)(30-24)
S² = 30*14*10*8
S = 60√7 см²
Площадь через высоту к стороне 16
S = 1/2*16*CH = 60√7
2*CH = 15√7
CH = 15/2*√7 см
---
HB по Пифагору из треугольника CHB
HB² + CH² = CB²
HB² = 24² - (15/2*√7)² = 576 - 225/4*7 = 729/4
HB = 27/2 cm
---
медиана СД делит сторону АВ пропорционально сторонам АС и ВС
АД/АС = ВД/ВС
(16-ВД)/20 =ВД/24
(16-ВД)/5 =ВД/6
6*(16-ВД) =5*ВД
96 - 6*ВД = 5*ВД
96 = 11*ВД
ВД = 96/11 см
---
НД = НВ - ВД
НД = 27/2 - 96/11 = 105/22 cm
---
по Пифагору из треугольника СНД
СД² = СН² + НД²
СД² = (15/2*√7)² + (105/22)²
СД² = 225/4*7 + 11025/484
СД² = 50400/121
CД = 60√14/11
---
угол между биссектрисой СД угла АСВ и биссектрисой СЩ внешнего угла ВСЖ равен 90°
Треугольники ЕСД и СНД прямоугольные и подобные - угол Д общий, ещё один угол прямой.
ЕД/СД = СД/НД
ЕД = СД²/НД
ЕД = 50400/121 / (105/22) = 960/11 см
M=4 дм - апофема усечённой пирамиды.
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
Ответ: высота усечённой пирамиды равна √7 дм.
Решаем.
первую сторону примем за х.
тогда вторая будет х+10 (она больше первой), третья будет х-5.
периметр х+(х+10)+(х-5)=47
первая х=14
вторая 14+10=24
третья 14-5=9
У треугольника сумма любых двух сторон больше третьей, а у нас 14+9=23 меньше 24.
Значит, треуг. не существует