Пункты 1) и 2) относятся к варианту, когда отрезок АМ вертикален, тогда плоскость МАВ тоже вертикальна.
1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.
2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ).
Отрезок FF1 равен ЕА.
Поэтому F1B = (3/2)*10 = 15 см.
АF1 = ЕF = 10 см.
Отсюда АВ = 10+15 = 25 см.
Примечание: <span>данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.</span>
1) Дано: АВСD - трапеция, АВ=СD, ∠А=20°.
Найти ∠В.
Решение.
В равнобедренной трапеции углы при каждом основании равны между
собой.
Сумма двух углов прилежащих к боковой стороне равны 180°.
∠А+∠В=180°, 20°+∠В=180°, ∠В=180°-20°=160°.
Ответ: 160°.
2) В этой задаче откуда взялась Н.
3) Дано: АВСD - трапеция, АВ=СD, ∠В+∠С=210°.
Найти углы трапеции.
Решение: ∠В=∠С ( в первой задаче объяснялось) ∠В=∠С=210/2=105°
∠А=∠D=180-105°=75°.
Ответ: 75°. 105°.
4) Дано: АВСD - параллелограмм, Р(АВСD)=50 см, АВ<ВС на 5 см.
Найти: АВ. ВС.
Решение. У параллелограмма противоположные стороны равны.
Пусть АВ=х, тогда ВС= х+5,
По условию: х+х+5+х+х+5=50,
4х=40,
х=10. АВ=10 см. ВС=10+5=15 см.
Ответ: 10 см; 15 см.
Решение:
Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам.
Высоту пирамиды найдём по теореме Пифагора, как катет прямоугольного треугольника √13²-5²=√144=12см
Большее боковое ребро также находим по теореме Пифагора, как гипотенузу √9²+12²=√225=15см
Решение на прикрепленном изображении)
ну и формулы прикрепила, может пригодятся, там понятно они написаны)
Выбей один. Тогда у тебя не будет четырех, а 4 делится на 2. Так проще!