Проведем от точки В к плоскости α перпендикуляр ( назовем эту точку О)
у нас получился прямоугольный треугольник АВ с гипотенузой АВ=12 и углом =60°
мы можем найти угол АВО = 90-60=30°(по св. прям. тр.)
По другому свойству мы можем найти АО( катет, напротив которого угол в 30°)
АО равняется половине гипотенузе, а значит 6 см
По теореме Пифагора находим расстояние от точки В до плоскости (или ВО):
ВО²=АВ²-АО²
ВО²=144-36=108
ВО=
Ответ:
0,7 ,т.к Sin это отношение противолежащего катета к гипотенузе . C=90 градусов , значит AB в любом случае гипотенуза.
Площадь параллелепипеда равна произведению площади основания на высоту. так как он прямой, то высота равна сторонам граней, то есть АА1, ВВ1, СС1, ДД1. Так как сторона АД меньшая, то диагональ АС тоже меньшая. Чтобы найти площадь параллелограмма АВСД, нужно знать его высоту АН. Высота АН образует два прямоуг треугольника АДН со стороной АД=17 и АСН со стороной АС=39. По теореме Пифагора из АДН => АД*АД=АН*АН+ДН*ДН, а из АСН=>АС*АС=АН*АН+СН*СН, откуда АН*АН=АД*АД-ДН*ДН и АН*АН=АС*АС-СН*СН. Обозначим ДН через х, тогда НС=ДС-х=28-х. Приравниваем выражения высоты АН, получаем
АД*АД-ДН*ДН=АС*АС-СН*СН, следовательно 17*17-х*х=39*39-(28-х)*(28-х)
решая уравнение находим, что х=8=ДН. Из треуг АДН(где АД=17 и ДН=8) находим АН=15. То есть площадь параллелограмма АВСД(основание параллеллепипеда) равна АН*ДС=15*28=420.
Диагональ А1Д образует прямоуг треугольник Д1ДА1, где А1Д1=АД=17, а противоположный угол=45. Отсюда сторона ДД1 (прилежащий к углу катет) находится по формуле ДД1=А1Д1*tg45=17*1=17
Получаем площадь АВСДА1ВС1Д1=17*420=7140
Значит расстояние до плосктсти это высота пирамиды ABCS. Так как треугольник ппавильный ( это который равносторонний?), то конец высоты на плоскости треугольника центр описанной окружности и является цетром пересечения медиан биссектрис, высот...
Берем медиану она делится точкой пересечения в отношении 2 к 1, то есть одна часть будет 6, а другая 3. Там далее вырисовывается прямоугольный треугольник образованный ребром, высотой , и частю медианы длинной 6, то высота по теорме Пифагора
Продолжим боковую сторону за вершину и опустим на нее высоту из вершины угла при основании; получим прямоуг. тр-к с углом 30 гр.(внешний угол при вершине=180-150=30 гр.); катет против угла 30гр - высота тр-ка=1/2гипотенузы и боковой стороны равноб. тр-ка; пусть гипотенуза=х, тогда катет=х/2; площадь тр-ка=1/2основания на высоту=1/2*х*(х/2)=x^2/4=36, x^2=36*4, x=6*2=12, это и есть боковая сторона.