<span>Получаем <em>вневписанную окружность</em>, которая касается одной из сторон треугольника и продолжения двух других.<em> Расстояние от вершины треугольника до точки касания вневписанной окружности с продолжением его боковой стороны <u>равно полупериметру</u></em>
---------------
</span><u>Подробно.</u><em>
Отрезки касательных, проведенные к окружности из одной точки, до точек касания равны.</em>
МК=МN=8 см.
Аналогично АК-АЕ и ВЕ=ВN.⇒
МА+АЕ=МК=8 и
МВ+ВЕ=МN=8
<em>Р</em>(АМВ=8+8=<em>16</em> см
<span>Вычислите: 1) 8,2 дм2(вквадрате) + 780 см2 2) 1,6 м2 + 40 см2 3) 6 ар - 204 м2 4) 4 га + 70000 м2
</span>
5!/(3! * (5 - 3)!) = 5!/(3! * 2!) = 4*5/2 = 10
10 наборов из 3 цифр, который составит 3! = 6 чисел
10* 6 = 60 комбинаций
Комбинации с нулем в начале 12
60 - 12 = 48
нужно решить уравнение в целых числах. пусть равные стороны по х см, а основание у, тогда периметр треугольника 2х+у=60, откуда х =(60-У)/2, х=30-у/2. Этому уравнению должны удовлетворять натуральные числа, которые подчиняются неравенству треугольника, т.е. всякое число из этой тройки меньше суммы двух других, и у кратен двум. Путем перебора найдены такие тройки (29,29,2),...(16,16,28) ВСЕго 14
Следующая тройка не удовлетворяет неравенству треугольника, т.к. для (15.15,30) 30 =15+15, и тогда все три вершины лежат на одной прямой, и нельзя построить треугольник с такими данными, следующие тройки тоже обладают этим свойством. Поэтому ответом будет 14 равнобедренных треугольников.
Удачи.
Координаты вектора АВ {3; -3}, координаты вектора АС{-4; -4}
cos A = ( -4*3 + (-3)*(-4)) /( (√9+16) *( √9 +16)) =0 / 25 = 0
координаты вектора ВА { -3;3 }, координаты вектора ВС {-7, -1}
cos B = ( (-3) * (-7) + 3*(-1) ) / (√9 +9) *(√49 +1) = (21 -3) / √18 *√50 = 18/√900 = 3/5
координаты вектора СА {4,4 }, координаты вектора СВ {7;1 }
cos C = (4*7 + 4* 1) / (√16 +16)* (√49 +1) = 32 / √32* √50 = 32/40 = 4/5