4) угол CВC1 = 30 градусов ( 90 / 3 )
---> BC1B1 = 30 градусов, т.к. ВС || B1C1
CC1 = 130 / 2 = 65 (катет против угла в 30 градусов)))
АВ || A1C1 (как перпендикуляры к параллельным прямым AC || A1B1 )
---> угол ABC1 = BC1A1 (как накрест лежащие при параллельных АВ и А1С1 и секущей ВС1 ) и тогда острые углы прямоугольных треугольников равны: угол АВС = В1С1А1 (АВС = АВС1 - 30°, В1С1А1 = ВС1А1 - 30°)
треугольники АВС и А1В1С1 равны по катету и прилежащему острому углу)))
следовательно, и гипотенузы равны
тогда ВВ1 = СС1 (т.к. ВВ1С1С --прямоугольник)
ВВ1 = 65
ВВ1 + СС1 = 130 (мм)
5) построение треугольника нужно начинать с высоты
провести прямую (первая прямая),
в любой точке построить перпендикуляр (серединный к любому отрезку),
на перпендикуляре от точки пересечения прямых отложить высоту ---это будет первая вершина треугольника
из нее раствором циркуля, равным стороне (любой данной) найти пересечение с первой прямой линией) ---это будет вторая вершина треугольника,
от нее отложить на первой прямой вторую данную сторону ---получили третью вершину)))
У прямоугольной трапеции два угла равны 90) меньший угол это х ,больший у
тогда у=50+х
сумма всех углов 360
180+2х+50=360
2х=130
х=65
у=50+65=115)
∠ABC = 180° - (45° + 30°) = 105°
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол,
α = 135°
180-55=125
смежные - углы, в сумме дающие 180
Наибольшей боковой гранью будет грань, у которой две противоположные стороны - гипотенузы треугольников основания. Тогда в этой боковой грани все стороны равны 10 (по теореме Пифагора), тогда и высота равна 10. Отсюда площадь равна сумме площадей трех прямоугольников, S=6*10+8*10+10*10=240