Решим уравнение в зависимости от значений параметра (постоянной)
Применим классическое решение уравнения типа
1) Найдем те значения , при которых обнуляются модули - это и
2) Выставим на координатной оси эти значения:
3.1) Рассмотрим промежуток :
Выясним значение выражений подмодульных выражений:
Раскроем данные модули. Если подмодульное выражение меньше нуля, то для того чтобы его раскрыть, нужно изменить знак выражение, тем самым модуль раскроется с неотрицательным выражением.
Если , то , что верно при любых из рассматриваемого промежутка
Если , то
3.2. Рассмотрим промежуток :
Выясним значение выражений подмодульных выражений:
Раскроем данные модули:
Если , то , что верно при любых из рассматриваемого промежутка
Если , то
Однако, 3 не входит в данный интервал, который мы рассматриваем.
3.3. Рассмотрим промежуток :
Выясним значение выражений подмодульных выражений:
Раскроем данные модули:
Если , то , что неверно ни при каких
Если , то
Рассмотрим данный ответ на заданном интервале. Этот ответ нам подойдет, если выполниться условие:
Решим данное неравенство методом интервалов:
1)
2)
Отметим данные точки на координатной оси
Таким образом,
Ответ:
- Если , то
- Если , то
- Если , то и
- Если , то