Т.к. ОA и OB - радиусы окружности, проведенные к касательным СА и СВ соответственно, то <CAО=<СВО=90°.
Отрезки касательных к окружности, проведенные из одной точки, равны (СА=СВ) и составляют равные углы с прямой СО, проходящей через эту точку и центр окружности (<АСО=<ВСО=72/2=36°).
Из прямоугольного ΔСАО найдем <АОС=180-90-36=54°
<АОС=<ВОС=54° (ΔСАО=ΔСВО).
Значит <АОВ=2*54=108°
Соединим точку Е с M и L, а точку A с L и K.
Четырехугольники MELK и MLAК - <u>параллелограммы</u>, так как обе <u>их диагонали</u> КЕ и ML в одном и МА и LK в другом <u>точкой пересечения</u> F и D соответственно<u> делятся пополам.</u>
LA║КМ, и EL║КМ
<em><u>Через точку, не лежащую на прямой, можно провести параллельную ей прямую, притом только одну.</u></em>
<em />Следовательно, точки А, L и Е лежат на одной прямой, что и требовалось доказать.
2) Пусть х - одна часть в пропорции.
Тогда углы равны: 4х и 5х.
4х+5х = 180
9х = 180
х = 20, тогда 4х = 80 гр, 5х = 100 гр
Ответ 80гр и 100гр