12х^2-4х^3=0
2x^2(6-2)=0
2x^2=-4
x^=2
2х+у=3;
-2х+6у=-10;
7у=-7 2х+1=3; 2х=2; х=1
у=-1
у=1
1) f(x) = 2x^-1 - 8x^-1/2 +6x^-2/3 +2x +6x^5/2
f'(x) = -2x^-2 +4x^-3/2 -4x^ -5/3 +2 +15x^3/2 =
= -2/x² +4/√х³ - 4/∛х^5 + 2 +15√x³
f'(1) = -2 +4 -4 +2 +15 = 15
2) Ищем производную по формуле : (UV)'= U"V + UV'
f'(x) = (x² -2)' *√(x² +1) + (x² -2) * (√(x²+1)'=
=2x*√(x² + 1) + (x² -2)* 1/2√(х² +1) * 2х=
= ( 2x(2x² +1) +x(x² -2) )/√(x² +1) = 5x³/√(х²+1)
f'(1) = 5√2/2
1
2
3
64x²+16x+1=0,x≠0
(8x+1)²=0
x=-1/8
4
1)(c-2)/(c+2) -2/(c-2)=(c²-4c+4-c²-2c)/(c-2)(c+2)=(4-6c)/(c-2)(c+2)=2(2-3c)/(c-2)(c+2)
2)2(2-3c)/(c-2)(c+2)*(c+2)/(2-3c)=2/(c-2)