В л.ч. - ар.прогр. с a1 = 27 и d = -2.5
Пусть x - n-й член прогрессии. Тогда с л.ч. стоит сумма первых n членов ар.пр., равная
(2a1 + d(n-1))/2 * n = (56.5 - 2.5n)n / 2 = (113 - 5n)n / 4
(113 - 5n)n / 4 = 157.5
113n - 5n^2 = 630
5n^2 - 113n + 630 = 0
D = 113^2 - 20 * 630 = 113^2 - 100 * 126 = 113^2 - (113 - 13)(113 + 13) = 13^2
n = (113 +- 13) / 10
n = 9 (второй корень нецелый)
x = 27 + 8 * (-2.5) = 27 - 20 = 7
(X+Y)-(2-2)=1 все очень легко и просто
Пусть x км/ч - скорость одного мотоциклиста, y км/ч - другого.
{140/x+7/12=140/y
{x+y=140
{20/x+1/12=20/(140-x)
{y=140-x
240/x+1=240/(140-x)
33600-240x+140x-x²=240x
x²+340x-33600=0
D=115600+134400=250000 (√D=500)
x1=(-340-500)/2=-420 (не удовл. )
x2=(-340+500)/2=80
y=140-80=60
Ответ: 60 и 80 км/ч скорость одного и другого велосипедиста.
Решение задания смотри на фотографии
Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х).
Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа
50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0
(только х≠18 , чтобы знаменатель не был равен нулю)
900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0
1044 -42х - (972-54х+54х-3х²)=0
1044 - 42х -972 +54х -54х +3х²=0
3х²-42х+72=0
разделим всё на 3,каждый член, для облегчения решения
х²- 14х+ 24 =0
Д=196-4·1·24=100
х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ.
Ответ: х=2км/ч