B1=2*3^1-1=2*3^0=2*1=2
b2=2*3^2-1=2*3^1=2*3=6
b3=2*3^3-1=2*3^2=2*9=18
b4=2*3^4-1=2*3^3=2*27=54
b5=2*3^5-1=2*3^4=2*81=162
S(bn)=2+6+18+54+162=242
или: Sn=(b1*(q^n-1))/(q-1);q=b2:b1=6:2=3
S5=(2*(3^5-1))/(3-1)=2*242/2=242
Ответ:242
Х=-15
15/1
или 30/ и так далее
Ответ:
Объяснение:
Сравните значения выражений: f(27-8√11) и g(4+√11) ,
если f(x) =√x, а g(x) =5/x
f(27-8√11)=√(27-8√11)>0
g(4+√11)=5/(4+√11)=5*(4-√11)/(16-11)=4-√11>0
возведем в квадрат оба значения
(f(27-8√11))²=27-8√11
(g(4+√11))²=(4-√11)²=16-8√11+11=27-8√11
квадраты значений равны
ответ: значения выражений: f(27-8√11) и g(4+√11),
если f(x) =√x, а g(x) =5/x равны
Tg(x+pi/6)>1/√3
arctg(1/√3)=pi/6
pi/6<x+pi/6<pi/2
0<x<pi/2-pi/6
0<x<pi/3
учитывая период tg равный pi
pi n<x< pi/3+pi n (n-целое)