4-x²=0⇒x=-2 U x=2
s=S(от -2 до 2)(4-x²(dx=4x-x³/3(от -2 до 2)=8-8/3+8-8/3=16-16/3=32/3=10 2/3кв ед
7^10-7^9+7^8=7^8(7^2-7^1+1)=7^8(49-7+1)=7^8*43.
Если один из мнодителей числа делится на 53, то и все число делится на 43. ч.т.д
Дано неравенство:
(−3+5√)(x−1)≤4(−3+5)(x−1)≤4
Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
(−3+5√)(x−1)=4(−3+5)(x−1)=4
Решаем:
Дано уравнение:
(√(5)-3)*(x-1) = 4
Раскрываем выражения:
3 - √(5) - 3*x + x*√(5) = 4
Сокращаем, получаем:
-1 - √(5) - 3*x + x*√(5) = 0
Раскрываем скобочки в левой части ур-ния
-1 - √5 - 3*x + x*√5 = 0
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
- √5 - 3*x + x*√5 = 1
Разделим обе части ур-ния на (-√(5) - 3*x + x*√(5))/x
x = 1 / ((-√(5) - 3*x + x*√(5))/x)
Получим ответ: x = -2 - √(5)
x1=-√5-2
Данные корни
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
x0≤x1
Возьмём например точку
x0=x1−1x0=x1−1=-2-√5-1=-3-√5
подставляем в выражение
(−3+5√)(x−1)≤4
(√5-3)*(-2-√5-1-1)<= 4
(-4-√5)*(-3+√5)<=4
но
(-4-√5)*(-3+√5)>=4
тогда
x≤−5√−2x≤−5−2
не выполняется
значит решение неравенства будет при:
x≥−5√−2
10 столов имеют общую длину 10*2=20 м . Проходов между десятью столами всего 9. Один из проходов шириной 2,5 м (между 5 и 6 столами), а остальные проходы по 1,5м.Значит длина всех проходов = 2,5+ 8*1,5=2,5+12=14,5 м. Между стенами два зазора по 0,5 м, то есть их длина =0,5*2=1м.Вся длина будет равна 20+14,5+1=35.5 м.
Пусть первая машинистка печатала в час x страниц. Тогда вторая машинистка печатала в час (x-2) страницы. Первая машинистка выполнила работу за
часов, а вторая - за
часов. По условию задачи вторая машинистка потратила на работу на 1 час больше. Составим и решим уравнение:
О.Д.З.
Домножим обе части на x(x-2):
60(x-2)+x(x-2)=60x
x=12 или x=-10, но второй корень не удовлетворяет условию задачи, так как является отрицательным.
Значит, первая машинистка печатала в час 12 страниц.
Ответ: 12 страниц.