1 Б
2А
3В
Это не точно, предположение
Воспользуемся формулой "сумма синусов равна удвоенному произведению синуса полусуммы на косинус полуразности":
2sin ((x+y)/2)cos ((x-y)/2)= - √2;
из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в
sin((x-y)/2)=-√2/2;
(x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk;
x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).
x=π/4+2πn или x=-π/4+2πk;
y=3π/4-2πn или y= 5π/4-2πk
Ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5<span>π/4-2πk); n, k</span>∈Z
(x + 2)² = 13 - (x - 3)²
x² + 4x + 4 = 13 - (x² - 6x + 9)
2x² - 2x = 0
2x(x - 1) = 0
x₁ = 0 x₂ = 1
Ответ: {0; 1}