Пусть x° - градусная величина внешнего угла. Тогда смежный с ним угол равен 2x°. Зная, что сумма смежных углов равна 180°, получим уравнение:
2x + x = 180
3x = 180
x = 60
Значит, внешний угол равен 60°.
1) 180 - 60 = 120° - градусная величина внутреннего треугольника
Т.к. 120° > 90°, то треугольник тупоугольный.
Ответ: тупоугольный.
BA =BC =13 ;
AC =10;
BD высота
AD = DC =AC/2 =5 ( свойства равнобедренного треугольника ).
ADB BD =√(AB² -AD²) =√(13² - 5²) =12
sin(<ABD) =AD/AB =5/13;
cos(<ABD) =BD/AB =12/13;
tq(<ABD) =AD/BD =5/12 ( или sin(<ABD)/cos(ABD) =5/13 :12/13 =5/12).
ctq(<ADB) =BD/AD =12/5 (ctq(<ABD) =1/tq(<ADB) =1/(5/12)=12/5 или cos(<ABD)/sin(ABD) =12/13 :5/13 =12/5).
7) =5y-7x-5y/35xy=-7x/35xy=-1/5y=-1/5*0.5=-0.4
8) (x+3)(x-5)≤0
н.ф.
x=-3 x=5
чертишь числовую прямую и решаешь методом интервалов, знаки +-+, следовательно ответ [-3;5] ответ: 2
эта функция ведет себя как обычная гипербола y=\frac{1}{x}. Поэтому при x>0 она убывает(то есть чем больше x, тем меньше y). Значит, на отрезке [\frac{1}{3} ; 1] yнаиб.=y(1/3)=3^15 , а yнаим.=y(1)=1.