1,6y+2,4-0,6=3,6y-4,8
1,6y-<span>3,6y=-4,8-2,4+0,6
-2y=7,8
y=-3,9</span>
Первообразная функции f(x) = 1/x это интеграл
F(x) = ∫ (1/x) dx + C = ln x + C
Чтобы первообразная проходила через точку А(1; 4), нужно найти постоянную интегрирования С.
x = 1
F(1) = 4
4 = ln 1 + C
4 = 0 + C
C = 4
Ответ: F(x) = ln x + 4
Logₓ₋₃(x^2-4x+3) ≥<span>1
если основание > 1, то данная логарифмическая функция возрастающая и наоборот.
Так что в нашем примере возможны 2 варианта
а) х - 3 > 1 б) 0 < х - 3 <1
х > 4 3 < x < 4
теперь решаем, учитывая ОДЗ
х</span>² - 4х +3 > 0 х² - 4х +3 > 0
x² - 4x + 3 > x - 3 x² - 4x + 3 < x - 3
решаем обе эти системы
х² -4х + 3 корни 1 и 3
х² -5х +6 корни 2 и 3
-∞ 1 2 3 4 +∞
IIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIII
Ответ: (4;+∞ )
б)-∞ 1 2 3 4 +∞
IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIII
IIIIIIIIIII
∅
Ответ: (4;+∞ )
У=4х
у=7/х
Для определения координат точек пересечения нужно приравнять правые части обоих уравнений найти значения "х" при которых выполняется равенство, затем найденные х подставить в одно из уравнений (удобнее по расчетам в первое) и найти значения у соответствующие этим значениям.
Полученные пары х и у и будут координатами точек пересечения.
Предварительно можно сказать, что первый график - прямая, проходящая через начало координат, а второй гипербола находящаяся в первом и третьем квадрантах.
4х=7/х, 4х^2=7, x 1,2 = +- √7 /2, x1=√7 /2, x2= -√7 /2
y=4x
y1=4*x1=2√7
y2=4*x2= -2√7
Т.о. координаты точек пересечения графиков:
х1= √7 /2 у1=2√7
х2= -√7 /2 у2= -2√7