А дальше находим корни этого уравнения, принадлежащие указанному отрезку:
Косинус равен единице только в точках х = 0 и х = 2П (из указанного промежутка).
На указанном отрезке [0; 2П] синус принимает наименьшее значение в точке "3 пи пополам", равное (- 1), а наибольшее - в точке "пи пополам", равное (+ 1).
Косинус на этом отрезке монотонно убывает от ) до П, (наименьшее значение, принимаемое косинусом на данном промежутке, равно - 1) и монотонно возрастает от П до 2П, где вновь принимает максимальное значение, равное +1.
Вычисляйте значения в концах отрезка:
х = 0 у = 0 - 0 = 0 - наименьшее значение.
х = 2П у = 2П - 0 = 2П - наибольшее значение
0,24///////////////////////////////////////////////////////////////////////////////
7аб-а^2+49б^2-7аб= —а^2+49б^2
м^2+10м+25-3м(м^2-8м+16)=м^2+10м+25-3м^3+24м-48м=м^2-3м^3-14м+25