А3.........
Б2..........
В4.........
Вот так!
Пусть xo - корень этого уравнения, тогда -xo также корень. Проверка:
Получилось тоже самое уравнение. Значит:
Подставим это значение в уравнение:
Не торопимся записывать эти значения в ответ. Обратите внимание, что это только <u>претенденты</u> на ответ. Теперь каждое значение нужно аккуратно подставить в изначальное уравнение, и проверить, на количество корней. Те значение. которые будут давать больше 1 корня, мы в ответ записывать не будем(по условию).
Решаем это уравнение с модулями на промежутках.
Заметим, что это ситуация аналогична пункту 2, решений тут нет.
Теперь складываем все полученные корни и того: 1 корень. Значит это значение пойдет в ответ.
Это значение не подходит, так как тут целых 3 корня.
Заметим, что это уравнение копия уравнения, при a=3, значит тут будет всего 1 корень, и это значение нм подходит.
Ответ: a=3,a=7.
Log6 135-Log6 3,75= Log6 135/3,75=Log6/36=2
Подкоренное выражение корня чётной степени должно быть ≥ 0 .
6 + 0,5x ≥ 0
0,5x ≥ - 6
x ≥ - 12
Область определения все значения х из промежутка x ∈ [- 12 ; + ∞)