A=4k+3, k∈Z - все числа при делении которых на 4 получаем остаток 3.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
<span>По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
</span>Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3
Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3.
Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1.
(12n+10)+1 при делении на 2 всегда получаем остаток 1.
<u><em>Ответ: </em></u><em><u>12n+11, n</u></em><u><em>∈Z</em></u>
(-1 2/3)
Это -1 целая две третьих?
2x²-17x+35=2x²-10x-2ax+10a
35-7x=2a(5-x)
a=7(5-x)/2(5-x)
a=3,5
<em>Ответ: ВО ВЛОЖЕНИИ Объяснение:</em>
<em />