...называется прямоугольным.
Пусть a и b параллельные прямые, с - секущая. Тогда углы (обозначенные синим цветом) равны как накрест лежащие. m и n бисектриссы этих углов. Известно, что бисектрисса делит угол пополам. Если накрест лежащие углы равны, то также равны и их половинки, т. е. угол 1 равен углу 2.
Рассмотрим две прямые m и n и секущую с. Углы 1 и 2 (желтые) являются накрест лежащие для этих прямых и секущей и поскольку (как было сказано выше) угол 1 = 2, то прямые m и n параллельны.
Доказано.
Правильная шестиугольная призма - призма, в основаниях которой лежат два правильных шестиугольника, а все боковые грани перпендикулярны этим основаниям.
Внутренний угол при вершине основания находится по формуле:
α=180*(n-2)/n, (где n - число сторон правильного многоугольника) и равен 120°.
Диагональное сечение правильной шестиугольной призмы это сечение плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.
Раз это сечение делит призму на две НЕРАВНЫЕ части, значит оно проходит через две короткие диагонали верхнего и нижнего оснований. Пусть это диагональ АС. Опустим из вершины В на диагональ перпендикуляр ВН.
Он разделит диагональ АС и угол АВС пополам по свойству высоты равнобедренного треугольника АВС с боковыми сторонами АВ и ВС.
В треугольнике АВН катет ВН лежит против угла 30° (90°-60°) и равен (1/2)*АВ. Тогда по Пифагору имеем: АН=√(АВ²-ВН²) =√(а²-а²\4) =(а√3/2). Значит АС=2*(а√3/2) = а√3, где а - сторона нашего шестиугольника.
Сечение делит призму на две. У одной периметр основания равен (2*а+a√3)=a(2+√3), а у второй (4*а+a√3)=a(4+√3). Соответственноо, площади боковых поверхностей этих призм равны S1=a(2+√3)*h и S2=a(4+√3)*h.
Их отношение равно: S1/S2 = [a(2+√3)*h]/[a(4+√3)*h] = (2+√3)/(4+√3).
1. Дано: АС пересекает DB = O (знак пересечения не знаю как поставить),
АО = СО, ВО = DO, АВ = 5см
Найти: CD.
Решение:
Т.к. АС пересекает DB = O , то образуются вертикальные равные углы ∠АОВ = ∠СОD.
ΔАОВ = ΔСОD по двум сторонам и углу между ними (1-й признак рав-ва треуг.). Следовательно, DC = AB = 5 см
3. Дано: в ΔАВС АВ = ВС, ВD ⊥АС, ∠СВD = 50°, AD = 4
Найти: ∠АВС, АС
Решение:
Т.к. в в ΔАВС АВ = ВС, то он является равнобедренным и по сойству равнобедренного треугольника высота ВD является медианой и биссектрисой. Следовательно, ∠ABD = ∠CBD = 50°, а значит, ∠АВС = 100°. AD = DC = 4см, значит, АС = 8 см
Треугольник равнобедренный,так как стороны равны,поэтому углы A и B тоже равны,значит каждый угол будет равен (180-44)/2=68 градусов
Биссектриса делит угол пополам,поэтому ADB равен 34 градуса