Задана однородная система лин. уравнений. Она всегда совместна, то есть имеет решения. Одним из решений всегда является тривиальное (нулевое) решение. Определим, сколько решений имеет система. Приведём систему к ступенчатому виду с помощью элементарных преобразований матрицы системы.
Система имеет ранг = 3 , а количество неизвестных 6 (3<6) ⇒ система имеет бесчисленное множество решений (она явл. неопределённой). Выбираем базисные неизвестные, это будут х₁ , х₂ , х₃ , т.к. определитель матрицы, составленной из коэффициентов перед этими неизвестными отличен от 0 .
Остальные неизвестные: х₄ , х₅ , х₆ - свободные неизвестные , они могут принимать произвольные значения. Выразим базисные неизвестные через свободные.
Ответ:
Нет пересечения с осью х, нет корней
Ответ ответ ответ ответ ответ ответ ответ
Вероятность один к двум.
То есть вероятность того, что "Физик№ хотя бы раз выиграет мяч составлят 50%.
Произведение равно нулю, если хотя бы один из множителей равен нулю