Дано: sin α + cos α = 1/2.
1) Найти sin α * cos α.
Заданное равенство возведём в квадрат: (sin α + cos α)² = (1/2)².
sin² α + 2sin α*cos α + cos² α = 1/4. Сгруппируем:
(sin² α + cos² α ) + 2sin α*cos α = 1/4. Сумма в скобках равна 1.
2sin α*cos α = (1/4) - 1 = -3/4.
Разделим обе части на 2 и получим ответ:
sin α*cos α = -3/8.
2) sin³ α + cos³ α = (1/64)*((1 - √7)³ + (1 + √7)³).
Ось симметрии параболы проходит через вершину параболы и при этом, она параллельна оси ординат. Тогда вид уравнения: x=x(вершина), где x(вершина) - вершина параболы по оси абсцисс.
y=-(x-3)²+4 ⇒ y=-(x²-6x+9)+4 ⇒ y=-x²+6x-5.
y=-x²+6x-5;
a=-1; b=6; c=-5;
x(вершина)=-b/2a=-6/2*(-1)=3.
x=x(вершина)=3 ⇒ x=3.
Ответ: x=3.
Ответ:
только 1 ое смогла решить
9с^2-12с+4. здесь 9=3^2. решаем используя формулу а^2-2ав+в^2. а=(3с)^2, в=2^2.