Пусть х - скорость теплохода в стоячей воде.
а) 9/х+20/(х-3)=1 (против течения)
б) 9/х+20/(х+3)=1 (по течению)
а) 9x-27+20x=x^2-3x
x^2-32x+27=0
оба решения отрицательные
б) 9x+27+20x=x^2+3x
x^2-26x-27=0
x1=13+14 x2=13-14
<span>Единственный годный ответ 27 км/ч (причем по течению).</span>
Под знаком корня квадратичная функция y=-21+10x-x^2.
График - парабола с ветвями "вниз", т.к. а=-1 <0.
Абсцисса вершины параболы: Х в.=-b/2a=-10/-2=5
Посмотрим,принадлежит ли полученное значение Х области определения, ведь выражение под знаком корня должно быть >=0:
-21+10*5-5^2=4. Все в порядке.
Итак,в точке х=5 функция Y=-21+10x-x^2 принимает наибольшее значение, равное 4. Функция, стоящая под корнем, монотонная,
поэтому y=V(-21+10x-x^2) в точке х=5 также принимает наибольшее значение, равное V4=2 ( V - знак корня).
Ответ: У наиб.=2
Х - скорость первого
y - скорость второго.
весь путь 84*3=252 км
<span>Оба гонщика стартовали одновременно, а на финиш первый пришёл раньше второго на 28 минут
значит:
252/х+7/15=252/y (7/15 - это 28 минут если перевести в часы)
</span>известно, что пер<span>вый гонщик в первый раз обогнал второго на круг через 10 минут
10 мин = 1/6 часа
</span><span>т.к по условию 1 круг равен 3 км значит
скорость*время=путь
(1/6)х=(1/6)у+3 домножаем левую и правую часть на 6:
х=у+18
получаем уравнение
252/(у+18)+7/15=252/у разделим всё на 7 и умножим на 15у(у+18) - ОЗ-чтобы убрать дроби
после упрощения получил уравнение
</span>у^2+18y-9720=0<span>
у=90 -скорость второго гонщика
</span>
проверяем... 90+18=108 -скорость первого
3*84/90=2,8 часа (второй гонщик в пути) = 2,8*60=168 минут
<span>3*84/108=2 1/3 часа = 140 минут
</span>168-140=28 минут