а)
x²-x=2 ⇒ x²-x-2=0
D=9
x1=-1;
x2=2;
б)
⇒ ⇒x=3
в)
Пусть (t>0 при x∈(-∞;+∞))
t²+2t-3=0
D=16
t1=-3 (не подходит, см. условия замены)
t2=1
⇒ x=0
г)
⇒ x=2
Систему уравнений решим следующим способом из второго уравнения выразим и подставим в первое уравнение
⇒ x=2
⇒ y=1
Сделав подстановку во всех примерах, убеждаемся, что корни найдены верно.
Сos a= корень из (1-sin^2a)= корень из (1- 9/25)= корень из 4/5.
tga=sina/cosa=3/5 : 4/5= 3/4
3/4 * (4/5)^2= 48/100= 0.48
B³-25b=0
b*(b²-25)=0
b=0 b²-25=0 ⇒ b=5 , b=-5
F(x) = x^2 + 6x;
первообразная:
F(x) = 1/3 * x^3 + 3x^2 + C;
F(2) = 1/3 * 8 + 3 * 4 + C;
В требовании указано: "Какую-нибудь первообразную функцию", мы же возьмём ту, которая даст нам более привлекательное отрицательное число, например: (1/3)*8 + 12 - 15;
С = - 15; (В первообразных функциях всегда добавляется какая-то константа, потому что производная от константы = 0, поэтому говоря про вервообразную функцию, мы всегда говорим об Колекции функций, с разным варированием этой константе, её всегда пишут буквой С).
Что бы найти результат, который бы удовлетворял нас выполним обычное уравнение:
F(2) = 1/3 * 8 + 3 * 4 - 15 = - 1/3
Вот эта функция и нам подходит, ты же можешь взять любое другое число, которое больше, но не меньше чем (-15), потому что указав число -14 мы получим 2/3, а нам не нужно положительный результат из требования...
S=b1:(1-q)
<u>S</u>=6:(1-2/3)=6:1/3=<u>18</u>