(1/2)*√7**(1/7)*√28=(1/2)*(√7)²*(1/7)*2=1
√28=√4*√7=2√7
d=9.8-7.5=2.3 а n член=5.2+2.3N
<span>Преобразуем
5n^2+10=5*(n^2+2)
тем самым мы получаем что квадрат должен быть кратен 5.
Пусть 5*k - это число, квадрат которого должно образовать выражение 5*(n^2+2)
тогда
5*(n^2+2)=25*k^2
или
n^2=5*k^2-2
Произведение 5*k^2 оканчивается либо на 5 либо на ноль, следовательно разность 5*k^2-2 оканчивается либо на 8 ли на 3.
Получается что n^2 должен оканчиваться либо на 8 либо на 3, что не возвожно, так как квадраты могут оканчиваться на одно из чисел 0,1,4,5,6,9
Следовательно 5n^2+10 не может быть квадратом натурального числа.</span>