Данное выражение это функция параболы. ax^2 + bx + c.
В данном случае x^2 - 4x - 8 = 0.
Так как a>0, то ветви этой параболы направлены вверх, вершина вниз. Тогда можно найти координаты вершины параболы (x0;y0) и именно значение функции y0 и будет ответом на вопрос.
x0 = - (b / 2a) = - [(-4) / 2*1] = 4/2 = 2,
y0 = (b^2 - 4ac) / (-4a) = (16 - 4*1*(-8)) / (-4*1) = 36 / (-4) = -12.
Наименьшее значение равно (-12) и значение переменной равно 2 для выражения x^2- 4х - 8
1) 3х2-х-4=0
D=(-1)^2-4*3*(-4)=1+48=49
x1=(1+7):6=1целая 2\6=1 целая1\3
х2=(1-7):6=-1
Ответ:-1; 1 целая 1\3
2) 3х2-10х+3=0
D=(-10)^2-4*3*3=100-36=64
x1=(10+8):6=3
х2=(10-8):6=2\6=1\3
Ответ:1\3;3.
Дальше, чтоб узнать сколько корней найдем дискриминант:
1)1) 2х ^2-х+1=0
D=(-1)^2-4*2*1=1-8=-7<0
D<0 корней нет.
2)5х2+3х-1=0
D=3^2-4*5*(-1)=9+20=29
D>0 2 корня
3)х2-10х+25=0
D=(-10)^2-4*1*25=100-100=0
D=0 1 КОРЕНЬ
2y²+8y²=0
2y(y+4)=0
2y=0 y=4
y=0