1) 4-средняя линия треугольник, следовательно равна половине основания, отсюда находим средний отрезок, 4*2=8, аналогично находим больший отрезок8*2=16, и основание 16*2=32
140. Пусть первый угол х, тогда второй х + 80.
Правило: сумма односторонних углов при пересечении двух параллельные прямых секущей равна 180°.
х + (х + 80) = 180
2х + 80 = 180
2х = 180 - 80
2х = 100
х = 50
х + 80 = 50 + 80 = 130
Ответ: 50° и 130°.
142. Правило: соответственные углы при пересечении двух параллельных прямых секущей равны.
а) 1) 180 - 139 = 41 (°)
2) 41 ≠ 42 (°)
Ответ: нет, не параллельны.
б) 1) 180 - 120 = 60 (°)
2) 60 = 60°
Ответ: да, параллельны.
в) Правило: накрест лежащие углы при пересечении двух параллельных прямых секущей равны.
1) 180 - 74 - 38 = 68 (°)
2) 68 = 68 (°)
Ответ: да, параллельны.
145. Чертёж необходимо дополнить, сделав его таким, как в приложении.
1) ∠1 = 180° - 133°- 22° = 25° (т.к сумма углов в треугольнике всегда 180°)
2) ∠2 = ∠1 (накрест лежащие при a II b и секущей с
∠2 = 25°
3) ∠х = 180° - 45° - 25° = 110°
Ответ: 110°.
(146-32)/2=57 см² квадрат второго катета
57+32=89 см² гипотенуза
P=√32+√57+√89=22.64 см
Периметр треугольника 22.64 см
Если сторона равна 6, то S полной поверхности = 6S квадратов = 6*6^2 = 216 см^2.
V куба = сторона квадрата в степени 3 = 6^3 = 216 см^3.
Из точки O, лежащей вне двух параллельных плоскостей α и β, проведены 3
луча, пересекающие плоскости α и β соответственно в точках A,B,C и
A1,B1,C1 (OA<OA1).
Найдите периметр A1B1C1, если OA=m, AA1=n, AB=c, BC=a., CA=b.
Если две параллельные плоскости пересечены другой плоскостью, то линии их пересечения параллельны. Значит треугольник А1ОВ1 подобен АОВ - Плоскость пересечения принадлежит обоим треугольникам, а основания параллельны, так как являются линиями пересечения. Таким же образом треугольники B1OC1 подобен BOC, а C1OD1 подобен COD. Коэффициент подобия находим из соотношения OA1 /OA . Если стороны треугольников подобны значит и сами треугольники ABC и A1B1C1 подобны.
Периметр ABC умноженный на коэффициент подобия будет равен периметру A1B1C1.
периметр A1B1C1 = (a+b+c) (m+n)/m