25,2 дм = 252 см
1,3 дм = 13 см
1. Пусть наименьшая его сторона будет х
2. Тогда наибольшая его сторона будет 13х
3sin2x+8cos²x=7
3*2sinxcosx+8cos²x=7*(sin²x+cos²x)
cos²x+6sinxcosx-7sin²x=0 (делим обе части на cos²x):
-7tg²x+6tgx+1=0
tgx=y=>-7y²+6y+1=0=>y1=1;y2=-1/7
1)tgx=1=>x=pi/4+pin
<span>2)tgx=-1/7=>x=-arctg(1/7)+pik,n,k-целые.</span>
Решение:
1) 40√3·√3/2·(-√2/2)=20·√3·√3·(-√2/2)=10·3·(-√2)=-30√2
2) 8√6 ·√2/2 ·(-√3/2)=4√6·√2·(-√3/2)=2√6·√2·(-√3)=-2√6·2·3=-2√36=-2·6=-12
3) 14√6 ·√3/2· (-√2/2)=7√6·√3·(-√2/2)=-7√18·(√2/2)
4) 28/(sin(-25π/4)cos(23π/4))=28/(-sin(6π+π/4)cos(5π+3π/4))=28/(-√2/2)·(1+(-√2/2))=14/(-√2/)·(1-√2/2)
5)23/(sin(-23π/6)cos(23π/3))=23/(sin(-3π+5π/6)cos(7π+2π/3))=23/(-1/2)(1-1/2)=23/(-1/4)=-23/4<span>
6)60/(sin(-32π/3)cos(35π/6))=60/(</span>sin(-10π +2π/3)cos(5π+5π/6))=60/(-√3/2)(1+(-√3/2))=-30√3·(1-√3/2)=-30√3+15·3=-30√3+45<span>
7)54/(sin(-28π/3)cos(23π/6))=</span>54/(-sin(9π)cos(5π+3π/6))=54/(0·cos(5π+3π/6)=54/0<span>
8)33√2cos(495°)=</span>33√2cos(360°+135°)=33√2cos(2π+3π/4)=33√2·(1-√2/2)=33√2-33√2·(√2/2)=33√2-33·2/2=33√2-33
X³-125y¹²=(x-5y⁴)(x²+5xy⁴+25y⁸).