X=π/4+πn, n∈Z [5π;13π/2]= [5π; 6,5π]
n=0 x1=π/4+0π=π/4∉ [5π; 6,5π]
n=1 x2=π/4+π=5π/4∉ [5π; 6,5π]
n=2 x3=π/4+2π=9π/4∉ [5π; 6,5π]
n=3 x4=π/4+3π=13π/4∉ [5π; 6,5π]
n=4 x5=π/4+4π=17π/4∉ [5π; 6,5π]
<u>n=5 x6=π/4+5π=21π/4∈[5π; 6,5π]</u>
<u>n=6 x7=π/4+7π=25π/4∈ [5π; 6,5π]
</u>n=7 x8=π/4+8π=33π/4∉ [5π; 6,5π]
Ответ: 21π/4; 25π/4
b1 = -32
q = 1/2
b6 = b1*q^(6-1) = -32 * (1/2)^5 = -32 * 1/32 = -1
S7 = b1 * (q^7 - 1) / (q - 1) = -32 * (1/128 - 1) / (1/2 - 1) = -32 * (-127/128) / (-1/2) = -2*32*127 / 128 = -127/2 = -63.5
2x-14+5x=153
7x-14=153
7x=167
x=167/7 или 23,9
X/1=2/x
x^2=2
x=1.41<3/2=1.5
неверное утверждение
(√15-√60)*√15=(√15-4√15)*√15= -3√15*√15= -3*15= -45