Решение
Находим интервалы возрастания и убывания.
Первая производная:
f'(x) = 2e^(2x) - 3e^x + 1
Находим нули функции. Для этого приравниваем производную к нулю
2e^(2x) - 3e^x + 1 = 0
Откуда:
x₁<span> = 0</span>
x₂<span> = -ln(2)</span>
(-∞ ;-ln(2)), f'(x) > 0, функция возрастает
(-ln(2); 0), f'(x) < 0, функция убывает
<span>(0; +∞), f'(x) > 0, функция возрастает</span>
<span>В окрестности точки x = -log(2) производная функции меняет знак с (+)
на (-). Следовательно, точка x = -log(2) - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+).
Следовательно, точка x = 0 - точка минимума.
</span>
Фото:::::::::::::::::::::::::::::
Решение смотри на фотографии