A) sin(π - x) + 2cos(3π/2 - x) = √2/2
sinx - 2sinx = √2/2
sinx = -√2/2
x = (-1)^(n)arcsin(-√2/2) + 2πn, n∈Z
x = (-1)^(n+1)arcsin(√2/2) + 2πn, n∈Z
x = (-1)^(n+1)(π/4)+ 2πn, n∈Z
b) (sinx/2 - 1)*(ctgx + √3) = 0
1) sinx/2 - 1 = 0
sinx/2 = 1
x/2 = π/2 + 2πn, n∈z
x₁ = π + 4πn, n∈Z
2) ctgx + √3 = 0
ctgx = - √3
x = arcctg(- √3) + πk, k∈Z
x₂ = 5π/6 + πk, k∈Z
Если рассчеты меня не подводят, то:
5а^3-20а^2-8а^3+48а^2
-3а^3+28а^2
Если нужно, то можно вынести -а^2 за скобки, тогда получится -а^2 (3а-28).
1) Приводим к общему знаменателю 55/99<63/99, получаем, что равенство верное.
5*(25^(1/x)) + 3*(10^(1/x)) ≥ 2*(4^(1/x))
5*(5^(2/x)) + 3*(2^(1/x)2*(5^(1/x)) - 2*(2^(2/x)) ≥ 0 делим на [(2^(2/x)]
5*(5/2)^(2/x) + 3* (5/2)^(1/x) - 2 ≥ 0
(5/2)^(1/x) = z, z > 0
5*(z^2) + 3z - 2 ≥ 0
D = 9 + 4*5*2 = 49
z1 = (- 3 - 7)/10
z1 = - 1< 0 посторонний корень
z2 = (- 3+ 7)/10
z2 = 2/5
(5/2)^(1/x) = 2/5
(5/2)^(1/x) =(5/2)^(-1)
1/x = = - 1
x = - 1