(y+2)^2-2y^2=7; y^2+4y+4-2y^2-7=0; -y^2+4y-3=0; D=4^2-4*(-1)*(-3)=16-12=4; y1=(-4-2)/(-2), y2=(-4+2)/(-2). y1=3, y2=1. x1=3+2=5, x2=1+2=3. Ответ: (5:3), (3:1).
Ответ : А.
Cos2x=0
2x=p/2+pn
X=p/4+pn/2
1) (0,6+2х)^2=0.6^2+(2x)^2=0.36+4x^2
2) (4a+1/8b)^2=(4a)^2+(1/8b)^2=16a^2+1/64b^2
3) <span>(12a-0, 3c)^2</span>=(12a)^2-(0.3c)^2=144a^2-0.09c^2
1)8cosπ/33*cos2π/33*cos4π/33*cos8π/33*
cos16π/33=(умножим делим sinπ/33)=
(8*cosπ/33*sinπ/33):(sinπ/33)*(cos2π/33*
cos4π/33)*cos8π/33*cos16π/33=
=4/(sinπ/33)*sin2π/33*cos2π/33*cos4π/33*
cos8π/33*cos16π/33=2/(sinπ/33)*sin4π/33*
cos4π/33*cos8π/33*cos16π/33=1/(sin2π/33)*
sin8π/33*cos8π/33*cos16π/33=1/(sinπ/33)*1/2*
sin16π/33*cos16π/33
1/(sinπ/33)*1/2*1/2sin32π/33=1/(sinπ/33)*1/4*
sin(π-32π/33)=1/(sinπ/33)*
1/4*sinπ/33=1/4
√4-2√3=
=16-2×9=
=16-18=
=-2