Уравнение касательно имеет вид :
у=f(x0)+(f'(x0))(x-x0) ... (*)
найдём производную:
f'(x)=(x)'e^4x+x(e^4x)'=e^4x+4xe^4x.
f(1)=e⁴.
f'(1)=e⁴+4e⁴=5e⁴.
подставим полученные значения в формулу(*) :
у=е⁴+5е⁴(х-1).
Пусть х - скорость (деталей/час), с которой рабочий должен был выполнять заказ
Тогда х+3 - скорость с которой рабочий фактически выполнял заказ
(х+3)*10=12*х
10х+30=12х
2х=30
х=15
15 деталей рабочий должен был выполнять за час, а выполнял 18 дет/час
тогда количество деталей 15*12 (или 10*18) =180
4х-3х=-14,4-1,4
х=-15,8
(на остальное времени нет:(тороплюсь.удачи!)
1) sin3x + sinx = 0
2sin2x * cosx = 0
sin2x= 0 или сosx = 0
2x=πn, n∈Z x=
, n∈Z
x=πn/2, n∈Z
множество ответов
входят в множество πn/2
Ответ: πn/2, n∈Z
2) √3* sinx*cosx = sin²x
√3*sinx*cosx - sin²x = 0
sinx (√3*cosx - sinx) = 0
sinx =0 или √3*сosx - sinx = 0
x=πn, n∈Z √3cosx = sinx
разделим обе части уравнения на сosx
√3 = tgx
tgx= √3
x=
, n∈Z
Ответ: πn, n∈Z;
, n∈Z
3) 3sinx*cosx - 2cos²x = 0
cosx (3sinx - 2cosx) = 0
cosx = 0 или 3sinx - 2cosx = 0
x=
,n∈Z 3sinx = 2cosx
3tgx = 2
tgx = 2/3
x = arctg(2/3) + πn,n∈Z
Ответ:
,n∈Z ; arctg(2/3) + πn,n∈Z
4) 3sinx*cosx - 5cos²x = 0
cosx (3sinx - 5cosx) = 0
cosx = 0 или 3sinx - 5cosx = 0
x =
, n∈Z 3sinx = 5cosx
3tgx = 5
tgx = 5/3
x= arctg(5/3)+πn, n∈Z
Ответ:
, n∈Z; arctg(5/3)+πn, n∈Z