<span>Если
переписать уравнение в виде: 3x^2+3x+1=-28x^3, то парабола слева имеет вершину в
точке (-0,5) и пересекает ось оу в точке х=0; у=1. Кубическая парабола
у=-28х^3 расположена во второй и четвертой четвертях.
Поэтому может
пересекается с первой параболой только при х от -0,5 до 0.
Значит корни многочлена могут быть расположены только на (-0,5; 0)
Так как делители 28: 2;-2;3;-3;4;-4;7;-7
Корнями могут быть отрицательные числа -1/2; -1/4; -1/3; -1/7 (*)
Если а-корень уравнения f(x)=0, то f(a)=0
Проверяем все числа (*)
</span>
<span>28·(-1/2)³+3·(-1/2)²+3·(-1/2)+1=(-28/8)+(3/4)-(3/2)+1≠0
</span>х=-1/2 не является корнем уравнения
<span><span>28·(-1/4)³+3·(-1/4)²+3·(-1/4)+1=(-28/64)+(3/16)-(3/4)+1=-(7/16)+(3/16)+(1/4)=(-4/16)+(1/4)=0
</span>значит х=-1/4 - корень уравнения.
Делим многочлен
</span>
<span><span>28x³+3x²+3x+1</span> на (4х+1) " углом"
_28х³ + 3х² + 3х + 1 <u>| 4x+1</u>
</span> <u>28x³ + 7x²</u> 7x²-x+1
_-4x² + 3x +1
<u>-4x² - x
</u> _4x +1<u>
</u> <u>4x +1</u> <u>
</u> 0
Уравнение примет вид
(4х+1)(7х²-х+1)=0
4х+1=0 7х²-х+1=0
х=-1/4 D=1-28<0
корней нет
Ответ. х=-1/4
РS.
Можно " догадаться " и разложить на множители прибавляя и вычитая слагаемые:
28х³+<u>7х²-4х²</u>+4х -х+1=0
7х²(4х+1)-х(4х+1)+(4х+1)=0
(4х+1)(7х²-х+1)=0
Объем работы (все детали ) - х
производительность ученика - х/8 дет/час
производительность работника - х/4 дет./час
Производительность работника больше на 2 дет./час
Уравнение.
х/4 - х/8 = 2 |×8
2х - х = 2*8
x=16 (дет.) заданное количество
Ответ: 16 деталей.
пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5
2% от 10м это 10м*0,02=0,2м;
То есть полотно может иметь длину от 10м-0,2м=9,8м до 10+0,2=10,2м
Ответ: 9,810,2