1) х^2 - 5х - 24 = ( Х - 8 )( Х + 3 )
D = 25 + 96 = 121 = 11^2
Х1 = ( 5 + 11 ) : 2 = 8
Х2 = ( 5 - 11 ) : 2 = - 3
2) х^2 - 6х - 27 = ( Х - 9 )( x + 3 )
D = 36 + 108 = 144 = 12^2
X1 = ( 6 + 12 ) : 2 = 9
X2 = ( 6 - 12 ) : 2 = - 3
3) ( ( x - 8 )( x + 3 )) / ( ( x - 9 )( x + 3 )) = ( x - 8 ) / ( x - 9 )
аx+36=a²+6x
Если корнем уравнения аx+36=a(2)+6x является любое действительное число, то это уравнение не зависит от х.
Следовательно ax = 6x т.е. a=6
Подставим a=6 в исходное уравнение
6x+36=6²+6x
Получим тождество, значит a=6 удовлетворяет условию задачи
Решим задачу на движение по воде
Дано:
t(против течения)=3 ч
t(по течению)=2 ч
S=48 км
v(течения)=2 км/час
Найти:
v(собств.)=? км/час
Решение
Пусть х км/час - собственная скорость лодки. Тогда скорость лодки по течению реки равна:
v(по теч.)=v(собств.)+v(течения)=х+2 км/час
Скорость лодки против течения реки равна:
v(против теч.)=v(собств.)-v(течения)=х-2 км/час.
По течению реки за 2 часа со скорость (х+2) км/час лодка проплыла расстояние:
S(расстояние)=v(скорость)×t(время)=(х+2)×2=2х+4 км
Против течения за 3 часа со скоростью (х-2) км/час расстояние:
3(х-2)=3х-6 км.
Всего лодка проплыла 48 км (расстояние против течения+расстояние по течению).
Составим и реши уравнение:
(2х+4)+(3х-6)=48
2х+4+3х-6=48
5х-2=48
5х=48+2
5х=50
х=50÷5
х=10 (км/час) - собственная скорость лодки
ОТВЕТ: собственная скорость лодки равна 10 км/час.
Проверим:
Против течения: 3×(10-2)=3×8=24 км
По течению: 2×(10+2)=2×12=24 км
24 км+24 км=48 км