Дано: ABC - равнобедренный ∆-к;
AB=BC;
BM - медиана;
точка O принадлежит BM.
Доказать, что ABO = CBO
Доказательство:
1.AB=BC (по условию)
2.BO — общая.
треугольник равнобедренный → BM — биссектриса
3. угол 1 = углу 2 (по свойству биссектрисы)
т. о. ∆-к ABO = ∆-ку CBO (по двум сторонам и углу между ними)
Все на картинке
если можно поставь лучшее решение
спасибо!!!!!!!!!!!!!!!!!!!!
Нарисовать отрезок длины 5 см. Это отрезок АВ.
Разделить его пополам. Середина отрезка АВ - точка О
Построить окружность с центром в точке О и радиусом 2,5
Из точки А построить вторую окружность радиусом 3.
Точка пересечения двух окружностей и есть точка С
(Таких точек две, наверху и внизу)
Угол АСВ равен 90 градусов, так как он опирается на диаметр АВ.
Катет АС=3
Задача решена.
<span>24 варианта. (считается как 4! (факториал), т.е. 1*2*3*4=24</span>