|x²+3x|=|2x-6|
|x(x+3)|=2|x-3|
______________ ______________ _______________ _____________
-3 0 3
1) x≤-3 (-x)(-x-3)=-2(x-3)
x²+3x=-2x+6
x²+3x+2x-6=0
x²+5x-6=0
(x+6)(x-1)=0
x(1)=-6∈(-∞;-3] x=-6 - решение уравнения
x(2)=1∉(-∞;-3]
2) -3<x≤0 (-x)(x+3)=-2(x-3)
-x²-3x=-2x+6
-x²-3x+2x-6=0
-x²-x-6=0
x²+x+6=0
D=1²-4*1*6=1-24=-23<0
Уравнение не имеет решений
3) 0<x≤3 x(x+3)=-2(x-3)
x²+3x=-2x+6
x²+3x+2x-6=0
x²+5x-6=0
(x+6)(x-1)=0
x(1)=-6∉(0;3]
x(2)=1∈(0;3] x=1 - решение уравнения
4) x>3 x(x+3)=2(x-3)
x²+3x=2x-6
x²+3x-2x+6=0
x²+x+6=0
D=1²-4*1*6=1-24=-23<0
Уравнение не имеет решений
Ответ: -6; 1
Решение смотри в приложении
(m-4)²-2(4-m)(1-m)+(1-m)²=m²-8m+16-2m²+10m-8+m²-2m+1 = 9
9 < 9.01
Что и требовалось доказать
Держи) Старалась решить максимально подробно.
Возник вопрос в 4-ом уравнении, потому что после сокращения получилось 21=21. Пожалуйста, обрати на это внимание.
Удачи)