ax² + bx + c = 0
D = b² - 4ac
x12 = (-b +- √D)/2a
D - это дискриминант
х12 - корни квадратного уравнения
+- это плюс минус
1
3x²+8x-21 = 3(x + (-4 - √79)/3)*(x + (-4 + √79)/3)
для разложения надо найти корни
D = 8² - 4*3*(-21) = 64 + 252 = 316
x12 = (-8 +- √316)/6 = (-4 +- √79)/3
2
5x²-4x+c=0
D = 16 - 20c = 0
16 - 20c = 0
20c = 16
c = 16/20 = 4/5
x12 = (4 + - 0)/10 = 4/10 = 2/5
корень 2/5
3
5x²-11 |x|-12=0
x² = |x|²
|x| вседа больше равен 0
5|x|²-11 |x|-12=0
D = 11² + 4*5*12 = 361 = 19²
|x| = (11 +- 19)/10 = 3 и -8/10
-8/10 < 0 не подходит
|x| = 3
x = 3
x = -3
ответ -3 и 3
Решение
1) log₅log₅ (5)¹/²⁵ = log₅ (1/25)log₅ 5 = log₅ 5⁻² = - 2
2) lg²x⁵ / [lgx³lgx¹/² = [ lgx⁵ * lgx⁵] / [2*lgx * (1/2)*lgx] =
= [5*lgx * 5 * lgx] / [lgx*lgx] = 25
3) log₂ (3x² - 10x) = 3
ОДЗ: 3x² - 10x > 0
x(3x - 10) = 0
x₁ = 0
x₂ = 10/3
x₂ = 3(1/3)
x∈ (- ∞ ; 0) (3(1/3) ; + ∞)
3x² - 10x = 2³
3x² - 10x - 8 = 0
D = 100 + 4*3*8 = 196
x = (10 - 14)/6
x = - 4/6
x₁ = - 2/3
x = (10 + 14)/6
x₂ = 4
Ответ: x₁ = - 2/3 ; x₂ = 4
4) log₃ (- x + 9) < 3
ОДЗ: - x + 9 > 0
-x > - 9
x < 9
x ∈ (- ∞ ; 9)
Так как 3 > 1, то
- x + 9 < 3³
- x < 27 - 9
- x < 18
x > - 18
С учётом ОДЗ x ∈ (- 18 ; 9)
Ответ: x ∈ (- 18 ; 9)
Периметр это сумма всех сторон.
В прямоугольнике две стороны по 7 см, две стороны по b см.
Р=2(b+7);
(1,2c-3d)*10 при c=5 b d=1,1:
(1,2*5-3*1,1)*10
(6-3,3)*10
2,7*10=27
(-2х+1)(-2х-7)=0
-(2x-1)(-2x-7)=0
(2x-1)(2x+7)=0
x=1/2
x=-3.5