1)Ответ:(-&;2/7)
2) Ответ: (-&;4)
3) Ответ: (5;+&)
Производная сложной функции
y ' = (sin3x) ' = cos3x *(3x)' = 3cos3x
Все решение на фотографиях)
(cos 7x -cos3x) +(sin8x+sin2x) =0;
- 2sin2xsin5x +2sin5xcos3x = 0;
sin5x(sin2x -cos3x) =0 ;
sin5x=0 ⇒ x =π*k/5 ,k ∈Z .
sin2x -cos3x =0
sin2x -sin(π/2 -3x) =0;
2sin(5x/2 -π/4)*cos(π/4 -x/2) =0 ;
sin(5x/2 -π/4)*cos(x/2 -π/4 ) =0 ;
sin(5x/2 -π/4) =0⇒5x/2 -π/4 =π*k ⇔ x = π/10+2π/5*k,k ∈Z
cos(x/2 -π/4)= 0 ⇒x/2 - π/4 =π/2 +π*k ⇔ x=3π/2+2π*k ,k∈Z
***********************************************************************
<em>sin2x -cos3x=0;</em>
<em>2sinxcosx -cosx(4cos²x -3) =0;²</em>
<em>cosx(2sinx -4cos²x +3) =0</em>
<em>cosx(4sin²x +2sinx -1) =0</em>
<span>(5,3*10^-4)(3*10^-2)=0.00053*0.03=0.0000159=1.59*10^-5
</span>