4(2x²-4x+3)-3x(5-4x)=8x²-16x+12-15x+12x²=20x²-31x+12
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 26.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=26
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=26
2n+1+2n+5=26
4n=20
n=5
5; 6; 7; 8
(6²-5²)+(8²-7²)=11+15
26=26 - верно
Пусть cos x = 0. Тогда sin^2 x - 5 * 0 * sin x + 2 * 0^2 = 0, sin x = 0. Но тогда нарушается основное тригонометрическое тождество, так не бывает. Значит, cos x ≠ 0.
Разделим уравнение на cos^2 x ≠ 0. Получим:
tg^2 x - 5tg x + 2 = 0
Это квадратное уравнение относительно tg x.
D = 25 - 4 * 1 * 2 = 25 - 8 = 17
tg x = (5 +- √17)/2
x = arctg((5 +- √17)/2) + πn, n ∈ Z