<3=180°-(60°+43°)=180°-103°=77°
Ответ: Да, является
Объяснение: Рассмотрим треугольники АЕД и BFC.
Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.
Ответ: 12 см².
Объяснение:
площадь треугольника равна половине произведения длин его сторон умноженная на синус угла между ними.
S=a*b*sinα/2=6*8*sin30°/2=12 см².
Данные отрезки параллельны линии пересечения плоскостей, следовательно, параллельны друг другу. АВ║CD.
Расстоянием между параллельными прямыми является длина отрезка, проведенного перпендикулярно к обеим прямым.
Плоскость линейного угла по определению перпендикулярна ребру двугранного угла, значит, перпендикулярна и прямым, которые параллельны этому ребру. ⇒ отрезок АС, перпендикулярный АВ и CD, - искомое расстояние между АВ и CD.
Построим линейный угол МАС двугранного угла между данными плоскостями. В треугольнике АМС угол АМС равен 60°, и <u>по т.косинусов: </u>
<em>квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.</em>
АС²=8²+5*-2•8•5•cos60°
АС²=89-80•1/2
АС²=49
АС=√49=<span>7 см </span>- это ответ.