<span>(3^-1)^-3=3^(-1*(-3))=3^3=27</span>
Это парабола, a>0, следовательно, ветви вверх.
Вершина:
х0= -b/2a = -(-6)/2*1 = 6/2 = 3
х0 = 3
Найдём у. Учитывая, что х в модуле рассмотрим следующие ситуации:
1)
y0= 9-18+8 = -1
2)
y0=9-18+8 =-1
Получается,что у нас есть две вершины в точках (-3;-1) и (3;-1), значит у нас две параболы.
Зная, как построить параболу y=x^2,построим и эти.
Начнём с вершины (-3;-1):
Следующие две точки это (-4;0) и (-2;0),затем (-1;3) и (-5;3), потом (0;8) и (-6;8).
Рассмотрим правую ветвь: при подставление х=1 получим y=3. Ветвь идёт вниз,значит рассматриваем вершину (3;-1) и делаем все те же операции. (см. фото)
Проведём прямую х=8, тем самым доказав, что наибольшее число общих точек график функции может иметь с прямой, параллельной оси абсцисс равно 3.
1) x⁴+9=10x²
x⁴-10x²+9=0
Замена переменной:
x²=t x⁴=t²
t² -10t+9=0
D=(-10)² - 4*9=100-36=64=8²
t₁=(10-8)/2=1
t₂=(10+8)/2=9
При t=1
x²=1
x₁=1
x₂= -1
При t=9
x²=9
x₁=3
x₂= -3
Ответ: -3; -1; 1; 3.
2) x⁴-14x²=15
x⁴-14x²-15=0
Замена переменной:
x²=t x⁴=t²
t²-14t-15=0
D=(-14)² -4*(-15)=196+60=256= 16²
t₁=(14-16)/2=-1
t₂=(14+16)/2=15
При t= -1
x²= -1
нет решений
При t=15
x²=15
x₁=√15
x₂= -√15
Ответ: -√15; √15.
3) x⁴+x²=0
x²(x²+1)=0
x²=0 x²+1=0
x=0 x²= -1
нет решений
Ответ: 0.
4) x⁴-x²-6=0
Замена переменной:
x²=t x⁴=t²
t²-t-6=0
D=(-1)² -4*(-6)=1+24=25=5²
t₁=(1-5)/2= -2
t₂=(1+5)/2=3
При t=-2
x²= -2
нет решений
При t=3
x²=3
x₁=√3
x₂= -√3
Ответ: -√3; √3.