Решение.
Треугольник АВС - равносторонний => АВ=ВС=АС.
Поскольку АА¹=ВВ¹=СС¹ (по условию) и АВ=ВС=АС, то АВ¹= ВС¹=А¹С.
Все углы в равностороннем треугольнике равны 60°. ∠А=∠В=∠С=60°.
∠А¹АВ¹= 180-60=120 (как смежный с углом А)
∠В¹ВС¹=180-60=120 (как смежный с углом В)
∠С¹СА¹=180-60=120 (как смежный с углом С)
Значит, все три угла равны.
Треугольники ΔА¹АВ¹, ΔВ¹ВС¹ и ΔС¹СА¹ равны по двум сторонам и углу между ними (ну, мы ведь уже по ходу решения доказали, что АВ¹= ВС¹=А¹С, ∠А¹АВ¹=∠В¹ВС¹=∠С¹СА¹, АА¹=ВВ¹=СС¹).
А поскольку данные треугольники равны, то и их стороны А¹В¹, В¹С¹ и А¹С¹ равны. Так как эти стороны равны, то ΔА¹В¹С¹ — равносторонний, что и требовалось доказать.
1) Достроим треугольник до треугольника АСМ, добавив равный ему, где АВ=ВМ, СМ=АС. Тогда СМ=АМ=АС, и треугольник АСМ - равносторонний (т.к. АС=2 АВ).
Все углы равностороннего треугольника равны 60º
∠САВ=60º
АЕ- биссектриса, и ∠ САЕ=∠ЕАВ=∠АСЕ=30º , а ∠СВА=180º-(60º+30º)=90º
------------------------------
2) В равнобедренном треугольнике АЕС ( по условию)
проведем высоту ( медиану) ЕН.
АН=НС=АВ
В треугольниках ЕАН и ЕАВ
<span>∠НАЕ=∠ЕАВ по условию
</span>АН=АВ
сторона АЕ - общая
Треугольники НАЕ и ЕАВ равны по первому признаку.
<span>∠ ЕНА= ∠ЕНС=90º по построению
</span>Отсюда угол АВЕ=АНЕ=90º
Треугольник АВС - прямоугольный с прямым углом В
Сумма острых углов прямоугольного треугольника равна 90º
<span>∠ ЕАС=∠ЕСА ⇒
</span><span><span>Так как АЕ биссектриса </span>∠ВАС, то ∠ВАС=2∠АСВ
</span><span>∠ АСВ+∠САМ= 3 ∠ АСВ
</span><span>∠ АСВ=90º:3=30º
</span><span>∠ САВ=2∠<span>САВ=60º
-------------------------------
3)
</span></span><span> АЕ=СЕ, следовательно, треугольник АСЕ - равнобедренный, угол САЕ=АСЕ. Достроим треугольник АВС равным ему, где боковая сторона равна АС, а основание равно АВ.
Тогда в нем АЕ=ЕС, и ЕС является биссектрисой угла С.
В новом треугольнике биссектрисы точкой пересечения делятся на равные части ( считая от вершин).
АВ=1/2АС, а основание нового треугольника равно АС, боковые стороны тоже в нем равны.
Так как АС=2АВ, ∠ АСВ=30°, отсюда ∠ВАС=60°.
<em><u>Треугольник АВС - прямоугольный с прямым углом В.</u></em></span>
тут смотрю , хотя на самом деле условие какое-то не очень понятное
Уравнение прямой, проходящей через точки с координатами (х_1, у_1) и (х_2, у_2), имеет вид
(у-у_1)/(у_2-у_1)=(х-х_1)/(х_2-х_1)
В нашем случае, получаем
(у-(-3))/(-1-(-3))=(х-6)/(-9-6)
(у+3)/2=(х-6)/(-15)
у+3=-(15/2)*(х-6)
у=-(15/2)*(х-6)-3
у=-(15/2)х+(15*6)/2-3
у=-(15/2)х+42
Могут быть множества вариантов -.-
К примеру: основание=2, стороны=4
основание=4, стороны равны 6