Треугольник OCD прямоугольный (OC перпендикулярно CD), ОС -гипотенуза, угол DCO = 30 градусам, значит OD (радиус) = (1/2)*OC = 17/2.
Пусть имеем пирамиду РАВС. Сторона ВС = а, угол АСВ = α.
Сторона АВ = а*tgα, АС = а/cosα.
Площадь основания So = (1/2)a*atgα = (a²tgα)/2.
Так как все боковые грани наклонены к плоскости основания под одинаковым углом, то применим формулу So = Sбок*cosβ.
Отсюда получаем Sбок = Sо/cosβ = (a²tgα)/(2*cosβ).
Рисунок к задачам по геометрии значительно упрощает их решение.
Нарисуем угол АОВ.
"Отнимем" от него угол АОА1, равный 15°, чтобы "сравнять" величины углов.
Оставшийся угол А1ОВ равен по величине двум углам СОВ.(см. рисунок)
∠АОВ=∠АОС+∠СОВ=155°
∠АОС > ∠СОВ
∠АОС-∠СОВ=15°
156°=2∠СОВ+15°
2°СОВ=155°-15°=140°
∠СОВ-140°:2=70°
∠АОС=70°+15°=85°
------------------
Решение можно записать немного иначе. Т.к. ∠АОС=∠ВОС+15°⇒
∠АОВ=∠ВОС+∠ВОС+15°
<span>∠ВОС+∠ВОС+15°=155</span>°<span>
</span>2∠ВОС=155°-15°=140°
∠ВОС=70°
∠АОС=70°+15°=85°
Найдем площадь исходного прямоугольника:
S=a*b=20*12=240
найдем площадь вырезанного прямоугольника:
S=8*4=32
Площадь оставшейся части=площадь исходного - площадь вырезанного
S=240-32=208
FK=18:2=9 см
DK-медиана,биссектриса,высота.
CKD=90°
FDK=36°