Можно отбрасывать период функции. Для y=sinx период =
.
Затем применимы формулы приведения:
1) Представим одночлен 5а в виде суммы одночленов: 5а=4а+а.
2) Произведем группировку.
3) Вынесем общий множитель за скобки.
4a²-5a+1 =
= 4a²-(4a + а) +1 =
= 4a²- 4a - а +1 =
= (4a²- 4a) - (а - 1) =
= 4а·(а- 1) - (а - 1) =
= (а-1)·(4а-1)
<u>Вопрос</u>: А каким образом из 4а·(а- 1) - (а - 1) получилось (а-1)·(4а-1)?
<u>Ответ</u>:
4а·(а- 1) - (а - 1) = <u>4а</u>·(а- 1)<u>- 1</u>·(а - 1) =
выделенные одинаковые скобки (а-1) это и есть общий множитель, его запишем в первых скобках, а во вторых скобках запишем то, что подчеркнуто <em>4а</em> и <em>-1 </em>
<u>= 4а</u>·(а- 1)<u>- 1</u>·(а - 1) = (а-1)·(4а-1)
Член геометрической прогрессии равен среднему геометрическому двух соседних членов:
Возводя в квадрат, поставим условие:
x = 1 не уд. поставленному условию.
Ответ: при x = -11.
.............................