Попробуем доказать методом полной математической индукции.
1) При n = 1 получаем 14*13^1 + 13*2^2 = 14*13 + 13*4 = 13*18 = 26*9
При n = 1 выражение кратно 9.
2) Пусть при некотором n выражение кратно 9. 14*13^n + 13*2^(2n) = 9k
Докажем, что оно кратно 9 также и при n+1.
14*13^(n+1) + 13*2^(2n+2) = 14*13*13^n + 13*4*2^(2n) =
= 182*13^n + 52*2^(2n) = 4*(14*13^n + 13*2^(2n)) - 4*14*13^n + 182*13^n =
= 4*9k + (182 - 56)*13^n = 4*9k + 126*13^n = 4*9k + 14*9*13^n
Ясно, что это число кратно 9.
Таким образом, если при n = 1 выражение кратно 9, при n кратно 9 и при (n+1) кратно 9, то оно кратно 9 при любом натуральном n.
Условие не писала =с^2-2c+3c-6-c^2= c-6
X²-6x+13=(x-3)²-9+13=(x-3)²+4
(x-3)²∈/0,∞)
((x-3)²+4)∈/4,∞)
2х²-10х=0
2х(х-5)=0
2х₁=0
х₁=0
х₂-5=0
х₂=5
0;5
Вот решение..................................