1. ABCD - сечение цилиндра, проведенное параллельно оси.
BD = 6 см, ∠BDA = 45°.
ΔBDA: ∠BAD = 90°, ∠BDA = 45°, ⇒ ∠DBA = 45°, ⇒
BA = AD = x
x² + x² = 6²
2x² = 36
x = √18 = 3√2
H = AB = 3√2 см - высота цилиндра.
Дуга AD 60°, ⇒ ∠AOD = 60° (центральный)
ΔAOD: AO = OD = R, ∠AOD = 60°, ⇒ треугольник равносторонний.
R = AD = 3√2 см
Sбок = 2πRH = 2π· 3√2· 3√2 = 36π см²
2. ВО = 6 см - высота конуса,
ОС = 2√3 дм - радиус основания.
ΔВОС: ∠ВОС = 90°, по теореме Пифагора
ВС = √(ВО² + ОС²) = √(0,36 + 12) = √12,36 дм
Сечение ΔАВС - равносторонний, так как АВ = ВС как образующие, ∠АВС = 60°.
Sabc = a²√3/4, где а - сторона равностороннего треугольника.
Sabc = 12,36√3/4 = 3,09√3 дм²
ВО=ОD,CO=OA(свойство диагоналей трапеции),AD>BC в 3 раза,отсюда следует S=45:3=15см
24 см так катет лежащий на против угла в 30 градусов равен половине гипотенузы
Обозначения AB = a; AC = b; BC = c;
a^2 + (b/2)^2 = 73;
(a/2)^2 + b^2 = 52;
(5/4)*(a^2 + b^2) = 125;
c^2 = 100; c = 10;