Центр описанной окружности лежит на пересечении серединных перпендикуляров треугольника.
Если вы знаете вписанные и центральные улы, то вариант на 1 фото гораздо легче.
Продли боковые стороны треугольника опускай из вершины на продолжение перпендикуляр.В тупоугольном треугольнике высоты на стороны, которые образуют тупой угол , падают на продолжение сторон, то есть основание перпендикуляра находится за плоскостью треугольника.Как смогла нарисовала. Угол просто тупой. Начертишь 150 гр., если это принципиально. Посмотривложение.
№1. Диагонали прямоугольника ABCD пересекаются в точке O. Найти угол ABO, если угол между диагоналями равен 70°.
Длины диагоналей прямоугольника равны.
Диагонали прямоугольника делятся точкой пересечения пополам
поэтому углы между диагоналями и боковой стороной равны между собой и равны (180°-70°):2 = 55°. То есть угол АВО = 55°
№2. На стороне BC параллелограмма ABCDвзята точка Р так,
что AB=BP.
Докажите, что AP – биссектриса угла BAD.
Треугольник АВР равнобедренный, поэтому угол ВАР = углу ВРА. А угол ВРА = углу РАD ( внутренние накрест лежащие при параллельных ВС и AD и секущей АР). То есть угол ВАР = углу РАD, а значит АР - биссектриса угла BAD
Периметр параллелограмма равен (АВ =CD): 10+10+8+10+18 = 56
Найти периметр параллелограмма, если CD=10 см, CP=6 см.
Это 2 признак равенства треугольников
Высота в прямоугольном треугольнике, проведенная из вершины прямого угла, делит его на два подобных и подобных исходному треугольнику. Для любых сходственных элементов (медиана, биссектриса, радиусы вписанной и описанной окружностей и т. п.) исходного и полученных треугольников <span> справедливо соотношение </span><span>.</span>