Если обозначить указанные точки
Е (середина отрезка SC) и
F (середина отрезка AD),
то искомое расстояние EF можно найти из какого-нибудь треугольника...
FС -- это гипотенуза прямоугольного треугольника (т.к. ABCD --квадрат))
FC = √5 (по т.Пифагора)
из равностороннего треугольника ADS, FS = √3
искомый отрезок EF --медиана треугольника FCS со сторонами 2, √3, √5
осталось решить этот треугольник)))
по т.косинусов 5 = 4+3 - 2*2*√3*cos(FSC)
cos(FSC) = √3 / 6
и вновь по т.косинусов
FE² = 1+3 - 2*1*√3*cos(FSC)
FE² = 4 - 1 = 3
FE = √3
Диагональ трапеции перпендикулярна к ее основаниям; тупой угол, прилежащий к большему основанию, равен 120, а боковая сторона, которая прилегает к нему, равна 7 см. Определить среднюю линию трапеции, если ее большая сторона равна 12 см.
Трапеция АВСД: диагональ АС⊥АД, АС⊥ВС, угол А=120°, АВ=7, СД=12 (большая сторона в ΔАСД)<А=<ВАС+<САД, откуда <ВАС=120-90=30°Из прямоугольного ΔАВС: ВС=АВ/2=7/2=3,5 (катет против угла в 30° равен половине гипотенузы)АС=АВ*сos 30=7*√3/2=3,5√3Из прямоугольного ΔАСД: АД²=СД²-АС²=144-36,75=107,25АД=0,5√429Средняя линия равна (ВС+АД)/2=(3,5+0,5√429)/2=1,75+0,25√429≈6,9Как то так :)
Что надо найти -то?И рисунок прикрепи,пожалуйста!)
∠АОВ - искомый угол, ОК - биссектриса.
х - угол, который образует биссектриса со стороной угла АОВ,
3х - угол, смежный с углом АОВ (по условию).
Сумма смежных углов 180°:
∠АОВ + ∠ВОС = 180°
2x + 3x = 180°
5x = 180°
x = 36°
∠AOB = 36° · 2 = 72°
7. Примем за угол 2 и 3 - Х.
Получается, угол 1 - 2Х (Х+Х).
1. 2Х+Х=180.
3Х=180.
Х=60 градусов - угол 2 и угол 3.
Угол 1 = 2*60 = 120 градусов.
8. Перпендикулярные прямые образуют прямые углы.
ОЕ - биссектриса угла СОВ => угол СОЕ = углу ЕОВ = 90:2 = 45 градусов.
Угол АОЕ = 90+45 = 135 градусов.