Применены : формула разности квадратов, свойства арифметического квадратного корня
График функции имеет вид параболы
по уравнению,задающему функцию можно определить некоторые особенности графика функции:
общий вид y=ax^2+bx +c
1)при a<0 парабола будет направлена ветвями вниз.а при а >0 наоборот.направленна вверх
2)с-точка пересечения графика с осью оу..то есть она будет иметь координату(0;С)
корни квадратного уравнения являются точками пересечения графика с осью ох..их можно найти по теореме Виета или через дискриминант(D):
если D>0-функция будет иметь два корня(или две точки пересечения с осью ох
если D=0-функция имеет только один корень(только одна точка пересечения с осью ох)
при D<0-точек пересечения с осью ох нет,как и нет корней
вершину параболы можно находить несколькими способами:
1)как полусумму корней найти иксовую коодинату и потом подставить в квадратное уравнение и на игрековую координату
2)вершина параболы-точка экстремума функции,то есть нужно найти производную функции,и определить точку максимума ,или минимума(все зависит от расположения праболы)-это будет иксовая координата,ее нужно подставить в исходную функцию и найти игрековую координату
Также квадратичную функцию любого вида можно построить постепенно преобразовывая элементарную квадратичную функцию y=x^2
1) a₇ + a₁₃ = 21
a₁ + 6d + a₁ + 12d = 21
2a₁ + 18d = 21
a₁ + 9d = 10,5
2) a₈ + a₁₂ - a₁₅ = 3
a₁ + 7d + a₁ + 11d - (a₁ + 14d) = 3
2a₁ + 18d - a₁ - 14d = 3
a₁ + 4d = 3