Решение задания смотри на фотографии
1) Log3 4 - log3 16 + log3 4/9= Log3 4/ 16 + log3 4/9=Log3 ((4/16)*( 4/9))= Log3 1/9=
Log3 (3)^-2= -2
2) 2 log7 27 – log7 81-2 log7 21=log7 27^2 / 81-2 log7 21= log7 729/ 81- log7 21 ^2= log7 9- log7 21 ^2 = log7 (9/ 441)= log7 (1/ 49) = log7 (7^-2)=-2
3) 2 log2 8 +log2 15/4 – log2 15=log2 (8^2*(15/4)) – log2 15= log2 ((64*15)/4) – log2 15 =
log2 (16*15) – log2 15 = log2 ((16*15)/15)= log2 (16)= log2 (2^4)=4
4) log3 7 * log4 81 * log7 2= log4 81 * log7 2*1/ log7 3= log4 3^4 *( log7 2/ log7 3 )=
4* log4 3 * log3 2=4* log3 2*(1/ log3 4) = 4* log3 2*(1/ log3 2^2) = 4* log3 2*(1/ 2 log3 2)= (4* log3 2)/ (2 log3 2) =4/2=2
5) Lg3(log3 25+log3 2-log3 5) = Lg3(log3 (25* 2)-log3 5)= Lg3(log3 50/ 5) = Lg3*log3 10 = log10 3* log3 10= log10 3/ log10 3=1
125^1/3 + корень из 5*5^1/2=5^(3*1/3)+5^(1/2+1/2)=5+5=10
/////////////////////////////////////
1+cosa = 2cos^2(a/2)
sin2a = 2sina cosa = 4sin(a/2)cos(a/2)cosa
Получаем после сокращения на 2cos(a/2):
(2sin(a/2)cosa)/cos(a/2) = 2tg(a/2)cosa