Любая диагональ прямоугольника делит его на прямоугольных треугольника и является для этих треугольников гипотенузой, а гипотенуза всегда больше любого катета
С номером 6, затрудняюсь помочь
Обозначим треугольник АВС(смотри рисунок). Прооведём прямые МК и МL. А ткже высоты в иреугольниках MBL и MKB соответственно h1 и h2. Очевидно, что ВО:ОМ будет равно отношению площадей треугольников BOL и MOL. Поскольку высота h1 у них общая. Вот и будем искать эти площади выражая их через площадь треугольника АВС. Поскольку АМ:МС=1:3, то так же относятся и площади треугольников АВМ и МВС. Аналогично находим площадь треугольника МВL из треугольника МВС и площадь МКВ из АВМ. У треугольников МВL и МКВ общее основание ВМ поэтому их площади относятся как их высоты h1:h2. А площади ВОL и ВОК относятся как их высоты h1:h2, потому, что у них общее основание ОВ. Дальше находим площади ВОL и MOL. Ответ ВО:ОМ=1.
Я так считаю, но не уверена что это правильно!!!
1)8
А со вторым извини не могу помочь...
Это какой класс?